Book chapter

L’approccio metodologico

Luigi Mastronardi
University of Molise, Italy - ORCID: 0000-0001-6012-2964

Gianluca Monturano
University of Molise, Italy

Luca Romagnoli
University of Molise, Italy - ORCID: 0000-0003-3243-1561

Mara Vasile
University of Molise, Italy

Mariella Zingaro
University of Molise, Italy


ABOUT THIS CHAPTER

This contribution presents a methodological path tailored to highlight and manage the generating processes of Community-based cooperatives in Italian inner areas. Some quantitative techniques are involved, in particular multivariate statistical techniques, together with text analysis, in order to process the outcomes of a direct survey based on open responses. Moreover, a study of scenario, based on balance sheet data, is proposed, to verify the potential profitability of a new cooperative.
Read more

Keywords: Principal component analysis, cluster analysis, Sentiment analysis, profitability analysis

Formats

PDF

Pages: 59-89

Published by: Firenze University Press

Publication year: 2020

DOI: 10.36253/978-88-5518-168-6.03

Download PDF

© 2020 Author(s)
Content licence CC BY 4.0
Metadata licence CC0 1.0

XML

Publication year: 2020

DOI: 10.36253/978-88-5518-168-6.03

Download XML

© 2020 Author(s)
Content licence CC BY 4.0
Metadata licence CC0 1.0

References

  1. Aluisio S., Specia L., Gasperin C. e Scarton C. 2010, Readability Assessment for Text Simplification, Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP for Building Educational Applications: 1-9.
  2. Barbera F., Dagnes J., Salento A. e Spina F. (a cura di) 2016, Il capitale quotidiano. Un manifesto per l’economia fondamentale, Donzelli, Roma.
  3. Boumans J.W. e Trilling D. 2016, Taking stock of the toolkit: An overview of relevant automated content analysis approaches and techniques for digital journalism scholars, «Digital Journalism», 4(1): 8–23.
  4. Corrao S. 2005, L’intervista nella ricerca sociale, «Quaderni di Sociologia», 38: 147-171.
  5. Di Ciaccio A. e Borra S. 2014, Statistica. Metodologie per le scienze economiche e sociali, McGraw-Hill, Milano.
  6. Drisko J. W. e Maschi T. 2016, Content Analysis, Oxford University Press, Oxford.
  7. Fabbris L. 2011, Statistica multivariata, McGraw-Hill Education Italy, Milano (POD).
  8. Grimmer J. e Stewart B. 2013, Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts, «Political Analysis», 21(3): 267-297.
  9. Holsti O. 1969, Content Analysis for the Social Sciences and Humanities, Addison Wesley, Reading.
  10. Johnson F. e Gupta S.K. 2012, Web Content Mining Techniques: A Survey, «International Journal of Computer Applications», 47, 11: 44-50.
  11. Kaufman L. e Rousseeuw, P.J. 2005, Finding Groups in Data. An Introduction to Cluster Analysis, John Wiley & Sons Inc., Hoboken, NJ.
  12. Krippendorff K. 2013, Content Analysis. An Introduction to Its Methodology, SAGE Publications, Los Angeles.
  13. Lanzt B. 2015, Machine Learning with R: Expert techniques for predictive modeling to solve all your data analysis problems, Packt Publishing, Birmingham.
  14. Liu B. 2010, Sentiment Analysis and Subjectivity, in Indurkhya N. e Damerau F.J. (eds.), Handbook of Natural Language Processing, CRC Press, Boca Raton: 627-666.
  15. Mayring P. 2000, Qualitative Content Analysis, Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, 1(2), <http://nbn-resolving.de/urn:nbn:de:0114-fqs0002204>.
  16. Munzert S., Rubba C., Meibner P. e Nyhuis D. 2015, Automated Data Collection with R. A practical guide to web scraping and text mining, Wiley, United Kingdom.
  17. Swanson D. R. 1986, Undiscovered public knowledge, «Library Quarterly», 56(2): 103-118.
  18. Taboada M., Brooke J., Tofoloski M., Voll K. e Stede M. 2011, Lexicon-Based Methods for Sentiment Analysis, «Computational Linguistics», 37, 2: 267-307.
  19. Welbers K., Van Atteveldt W. e Benoit K. 2017, Text Analysis in R, «Communication methods and measures», 11, 4: 245-256.
  20. Zani S. e Cerioli A. 2007, Analisi dei dati e data mining per le decisioni aziendali, Giuffrè, Milano.

Export citation

Selected format

Usage statistics policy

  • 89Chapter Downloads

Cita come:
Mastronardi, L.; Monturano, G.; Romagnoli, L.; Vasile, M.; Zingaro, M.; 2020; L’approccio metodologico. Firenze, Firenze University Press.


Distributori


Indici e aggregatori bibliometrici